VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. II Year (E.C.E.) II - Semester (Main) Examinations, May - 2016

Electromagnetic Theory

Time: 3 hours
Max. Marks: 70
Note: Answer ALL questions in Part-A and any FIVE from Part-B
Part-A ($10 \times 2=20$ Marks)

1. A field is given as $G=\frac{25}{x^{2}+y^{2}}\left(x \hat{a}_{x}+y \hat{a}_{y}\right)$. Find the angle between G and \hat{a}_{x} at $P(3,4,-2) \mathrm{m}$.
2. The finite sheet $0 \leq x \leq 1,0 \leq y \leq 1$ on the $z=0$ plane has a charge density $\rho_{s}=x y\left(x^{2}+y^{2}+25\right)^{3 / 2} \eta C / m^{2}$. Find the total charge on the sheet.
3. State uniqueness theorem.
4. Find the dielectric constant of a material which contains 10^{21} molecules $/ \mathrm{m}^{3}$, each of which has a moment of $2 \times 10^{-27} \mathrm{C}-\mathrm{m}$ parallel to an electric field of $10^{5} \mathrm{~V} / \mathrm{m}$.
5. State Biot-Savart's law.
6. Express the magnetic vector potential directly in terms of source current.
7. What is loss tangent? Discuss its significance.
8. What is a uniform plane wave?
9. Give the reason why Brewster angle is not practically possible.
10. State Poynting's theorem.

Part-B ($5 \times 10=50$ Marks)

11. a) Obtain the expression for the electric field due to an infinite line charge located along z -axis.
b) Given $\bar{V}=x \cos ^{2} y \hat{a}_{x}+x^{2} e^{z} \hat{a}_{y}+z \sin ^{2} y \hat{a}_{z}$ and ' S ' is the surface of a unit cube with one corner at the origin and edges parallel to the coordinate axis. Find the value of the integral $\iint_{S} \nabla . \hat{n} d S$
12. a) Derive divergence of current density in electrostatic field.
b) Two media 1 and 2 are separated by X-Y plane. Medium $1\left(z>0, \varepsilon_{r 1}=4\right)$ has electric field $3 \hat{a}_{x}+5 \hat{a}_{y}+2 \hat{a}_{z} \mathrm{~V} / \mathrm{m}$. What will be the electric field and electric flux density in medium $2\left(z<0, \varepsilon_{12}=16\right)$.
13. a) Derive an expression for inductance of N -turn solenoidal coil.
b) A current sheet $K=8 \hat{a}_{x} \mathrm{~A} / \mathrm{m}$ flows in the region $-2<y<2$ in the plane $z=0$. Calculate H , at $\mathrm{P}(0,0,3) \mathrm{m}$.
14. a) Show that the ratio of E and H in free space is 120π Ohms.
b) For uniform plane wave in sea water $\sigma=4 \mathrm{mho} / \mathrm{m}, \varepsilon=80 \varepsilon_{0}, \mu=\mu_{0}$. Find attenuation constant, phase shift constant, propagation constant, velocity of wave, wave length and intrinsic impedance for the following two frequencies 10 GHz and 25 GHz .
15. a) Determine the resultant electric and magnetic fields of a plane wave, when it is incident on a perfect conductor normally.
b) A uniform plane wave in air impinges at 45° angle on a lossless dielectric material with dielectric constant ε_{r}. The transmitted wave propagates in a 30° direction with respect to the normal. Find ε_{r}.
16. a) Given that $\bar{D}=r^{2} \hat{a}_{r}+2 \sin \theta \hat{a}_{\theta}$ in spherical coordinate system, where D is the electric flux density. Find the charge density ρ_{v}.
b) The point charges $-1 \eta \mathrm{C}, 4 \eta \mathrm{C}$ and $3 \eta \mathrm{C}$ are located at $(0,0,0) \mathrm{m},(0,0,1) \mathrm{m}$ and $(1,0,0) \mathrm{m}$ respectively. Find the energy stored in the system.
17. Write short notes on any two of the following:
a) Stoke's theorem
b) EM Wave Polarization
c) Instantaneous, average and complex Poynting's vector.
